In this work, we utilize three parallel optical reservoir computers to model three optical dynamic systems, respectively. Here, the three laser-elements in the response laser array with both delay-time feedback and optical injection are utilized as nonlinear nodes to realize three optical chaotic reservoir computers (RCs). The nonlinear dynamics of three laser-elements in the driving laser array are predictively learned by these three parallel RCs. We show that these three parallel reservoir computers can reproduce the nonlinear dynamics of the three laser-elements in the driving laser array with self-feedback. Very small training errors for their predictions can be realized by the optimization of two key parameters such as the delay-time and the interval of the virtual nodes. Moreover, these three parallel RCs to be trained will well synchronize with three chaotic laser-elements in the driving laser array, respectively, even when there are some parameter mismatches between the response laser array and the driving laser array. Our findings show that optical reservoir computing approach possibly provide a successful path for the realization of the high-quality chaotic synchronization between the driving laser and the response laser when their rate-equations imperfectly match each other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.418202 | DOI Listing |
This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.
View Article and Find Full Text PDFMediastinum
December 2024
Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, USA.
Background And Objective: Diagnosis of pathology in the mediastinum has proven quite challenging, given the wide variability of both benign and malignant diseases that affect a diverse array of structures. This complexity has led to the development of many different non-invasive and invasive diagnostic modalities. Historically, diagnosis of the mediastinum has relied on different imaging modalities such as chest X-ray, computed tomography (CT), magnetic resonance imaging, and positron emission topography.
View Article and Find Full Text PDFSmall Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!