We investigate the focusing properties of cylindrical vector beams (CVBs) generated from the combination of an array of beams, each with sub-apertures and controllable polarization. The analytical expression of the tight focusing field of the combined CVBs has been derived based on the Richard-Wolf vector diffraction integral. To obtain a desired focal spot size which includes efficient sidelobe suppression, the required parameters, such as the exit sub-aperture, numerical aperture and truncation parameter, have been studied in detail. The result shows that the combined CVB distribution has a good match with the theoretical ideal CVB distribution. However, compared with the ideal CVBs, the focal spot width produced by the combined radially polarized beams is smaller. With the increase of initial polarization rotation of sub-aperture, the focal spot width increases, and the focal shape shifts from Gaussian-like to a flat-topped distribution and then to an annular distribution. Furthermore, flexible focal field tailoring can also be realized by adjusting the initial polarization rotation of each sub-aperture. These results might provide a valuable reference for material processing, microlithography and multi-particle manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.417038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!