AI Article Synopsis

  • A new magnetic adsorbent, MnFeO@AC, was developed using a simple method and proven effective in removing acetochlor from water under various conditions, showing strong adsorption capabilities.
  • Main adsorption mechanisms include hydrogen bonding, π-π interactions, and pore-filling, achieving near equilibrium after about 10 hours with a capacity of 226 mg/g.
  • Although the adsorbent can degrade and regenerate effectively with heat-activated PMS oxidation, its adsorption capacity drops by 50% after regeneration, indicating a need for further research on improving this aspect.

Article Abstract

In this study, MnFeO supported activated carbon magnetic adsorbent (MnFeO@AC) was successfully prepared by a simple one-pot solvothermal method and used for the adsorption and removal of acetochlor from aqueous media. Results showed that MnFeO@AC with a MnFeO/AC mass ratio of 1:2 was characterized by good magnetism and high acetochlor adsorption capacity over a wide ranging pH, ionic strength, and humic acid concentration in an aqueous solution. Acetochlor was adsorbed on MnFeO@AC mainly by hydrogen bonding, π-π interactions, and pore-filling via film, intraparticle, and pore diffusion steps. Adsorption reaction generally approached an equilibrium after 10 h, with the adsorption capacity being ca. 226 mg g for 0.2 g L adsorbent at 25 °C. Adsorbate (acetochlor) degradation and adsorbent regeneration were simultaneously achieved through heat-activated peroxymonosulfate (PMS) oxidation catalyzed by MnFeO on the AC surface with >90% degradation efficiency at ≥9.6 mM PMS concentration at 70 °C within 12 h. However, the adsorption capacity of the regenerated adsorbent decreased by 50% of its original capacity. This needs to be addressed in future studies. MnFeO@AC adsorbent has the advantages of high adsorption capacity, good magnetism, and catalyzation, which are promising for adsorption, separation, and degradation for the effective removal and treatment of acetochlor as well as other organic contaminants in different types of waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146353DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
16
removal acetochlor
8
activated carbon
8
adsorption
8
good magnetism
8
acetochlor
6
adsorbent
5
capacity
5
efficient removal
4
acetochlor pesticide
4

Similar Publications

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Dually Fluorinated Unimolecular Micelles for Stable Oxygen-Carrying and Enhanced Photosensitive Efficiency to Boost Photodynamic Therapy against Hypoxic Tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!