Methyl jasmonate (MeJA) is a volatile hormone involved in a number of plant processes, acting as a signal in response to external stresses and modulating the biosynthesis of other phytohormones. Here, we are reviewing for the first time all reports related to the effects of exogenous MeJA on postharvest fruits. Application of MeJA during preharvest and postharvest stages has been demonstrated to enhance fruit antioxidant capacity and phenolics content, which in turn extended fruit shelf-life, enhanced fruit quality and reduced chilling injury. The postharvest application of MeJA has been reported to alter volatiles pattern and to enhance the innate disease resistance of postharvest fruits against pathogenic fungi. The results obtained using different treatment conditions, such as temperature, storage time and concentration, have been highlighted and compared along the manuscript in order to provide new insights on the applicability of MeJA for enhancing postharvest fruit quality and preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129482 | DOI Listing |
BMC Nutr
December 2024
Department of Food Science and Postharvest Technology, Faculty of Agriculture and Environment, Gulu University, P.O. Box 166, Gulu, Uganda.
Background: Globally, iron deficiency anaemia is a widespread public health problem affecting vulnerable populations including adolescents. However, over the years, the Uganda Demographic Health Surveys mostly report the status of anaemia for women of reproductive age (15-49 years) and children up to 5 years, leaving out the focus on adolescents. Moreover, high prevalence of anaemia among children below five years could suggest that anaemia still persists at adolescence.
View Article and Find Full Text PDFSci Rep
December 2024
Horticulture Crops Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran.
Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China.
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. In this study, PePpoA and PePpoC proteins were identified in . The deletion of decreased C8 MVOC production in , while they were not detected in the strain ( < 0.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!