Femoral strain is indicative of the potential for bone remodeling (strain energy density, SED) and periprosthetic femoral fracture (magnitude of principal strains) after total hip arthroplasty (THA). Previous modeling studies have evaluated femoral strains in THA-implanted femurs under gait loads including both physiological hip contact force and femoral muscle forces. However, experimental replication of the complex muscle forces during activities of daily living (ADLs) is difficult for in vitro assessment of femoral implant or fixation hardware. Alternatively, cadaveric tests using simplified loading configurations have been developed to assess post-THA bone mechanics, although no current studies have demonstrated simplified loading configurations used in mechanical tests may simulate the physiological femoral strains under ADL loads. Using an optimization approach integrated with finite element analysis, this study developed axial compression and combined axial compression and torque testing configurations for three common ADLs (gait, stair-descent and sit-to-stand) via matching the SED profile of the femur in THA-implanted models of three specimens. The optimized simplified-loading models showed good agreement in predicting bone remodeling stimuli (post-THA change in SED per unit mass) and fatigue regions as compared with the ADL-loading models, as well as other modeling and clinical studies. The optimized simplified test configurations can provide a physiological-loading based pre-clinical platform for the evaluation of implant/fixation devices of the femur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2021.110363 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Background: Rib and sternum fractures are common injuries associated with cardiopulmonary resuscitation (CPR). The fracture mechanism is either direct by application of force on sternum and anterior ribs or indirect by bending through compression of the thorax. The aim of this study was to determine morphologies of rib fractures after CPR and to reevaluate prior findings on fracture localisation, type and degree of dislocation.
View Article and Find Full Text PDFSci Rep
January 2025
Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory, Heilongjiang University of Science and Technology, Harbin, 15002, China.
When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To achieve the assembled connection between dovetail profiled steel sheets and the boundary members in dovetail profiled steel concrete composite shear walls (DPSCWs), self-tapping screws were employed. Three DPSCW specimens connected with self-tapping screws were tested under combined axial and cyclic lateral loads to evaluate their hysteretic response, focusing on the influence of the number of self-tapping screws and the axial compression ratio. The self-tapping screw-connected DPSCWs exhibited a mixed failure mode, characterized by shear failure of the profiled steel sheets and compression-bending failure of multiple wall limbs divided by ribs on the web concrete.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Peking University People's Hospital, Beijing, China.
Purpose: Correctly classifying uterine fibroids is essential for treatment planning. The objective of this study was to assess the accuracy and reliability of the FIGO classification system in categorizing uterine fibroids via organ-axial T2WI and to further investigate the factors associated with uterine compression.
Methods: A total of 130 patients with ultrasound-confirmed fibroids were prospectively enrolled between March 2023 and May 2024.
Ann Thorac Surg Short Rep
September 2024
Department of Pediatric Cardiovascular Surgery, Kanazawa Medical University, Ishikawaken, Japan.
Background: The study focuses on vascular compression of the main bronchus in the aortopulmonary space, examining potential contributors within the same axial plane. Its goal is to uncover mechanisms of bronchial compression in patients with intracardiac anomalies and review surgical outcomes, aiming to enhance future results.
Methods: The morphology and topology of structures within the axial plane of the aortopulmonary space were objectively analyzed, including the sternum, ascending aorta, heart, pulmonary artery, descending aorta, and other relevant elements.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!