Obstacle avoidance is one of the skills required in coping with challenging situations encountered during walking. This study examined adaptation in gait stability and its interlimb transfer in a virtual obstacle avoidance task. Twelve young adults walked on a treadmill while wearing a virtual reality headset with their body state represented in the virtual environment. At random times, but always at foot touchdown, 50 virtual obstacles of constant size appeared 0.8 m in front of the participant requiring a step over with the right leg. Early, mid and late adaptation phases were investigated by pooling data from trials 1-3, 24-26 and 48-50. One left-leg obstacle appearing after 50 right-leg trials was used to investigate interlimb transfer. Toe clearance and the anteroposterior margin of stability (MoS) at foot touchdown were calculated for the stepping leg. Toe clearance decreased over repeated practice between early and late phases from 0.13 ± 0.05 m to 0.09 ± 0.04 m (mean ± SD, p < 0.05). MoS increased from 0.05 ± 0.02 m to 0.08 ± 0.02 m (p < 0.05) between early and late phases, with no significant differences between mid and late phases. No differences were found in toe clearance and MoS between the practiced right leg for early phase and the single trial of the left leg. Obstacle avoidance during walking in a virtual environment stimulated adaptive gait improvements that were related in a nonlinear manner to practice dose, though such gait adaptations seemed to be limited in their transferability between limbs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2021.110357DOI Listing

Publication Analysis

Top Keywords

obstacle avoidance
12
interlimb transfer
12
young adults
8
foot touchdown
8
toe clearance
8
virtual
5
obstacle
4
avoidance training
4
training virtual
4
virtual environments
4

Similar Publications

Family child care (FCC) offers a promising setting for obesity prevention, yet interventions have had varied success, potentially due to insufficient stakeholder input. This study aimed to explore barriers, facilitators, and preferences for healthy eating and physical activity interventions among Australian FCC educators and organization staff. Semi-structured interviews were conducted with 15 FCC educators and 6 staff members, using the framework method for data analysis.

View Article and Find Full Text PDF

The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.

View Article and Find Full Text PDF

Automated guided vehicles play a crucial role in transportation and industrial environments. This paper presents a proposed Bio Particle Swarm Optimization (BPSO) algorithm for global path planning. The BPSO algorithm modifies the equation to update the particles' velocity using the randomly generated angles, which enhances the algorithm's searchability and avoids premature convergence.

View Article and Find Full Text PDF

The production stage of an automated job shop is closely linked to the automated guided vehicle (AGV), which needs to be planned in an integrated manner to achieve overall optimization. In order to improve the collaboration between the production stages and the AGV operation system, a two-layer scheduling optimization model is proposed for simultaneous decision making of batching problems, job sequences and AGV obstacle avoidance. Under the AGV automatic path seeking mode, this paper adopts a data-driven Bayesian network method to portray the transportation time of AGVs based on the historical operation data to control the uncertainty of the transportation time of AGVs.

View Article and Find Full Text PDF

Ultra robust negative differential resistance memristor for hardware neuron circuit implementation.

Nat Commun

January 2025

Key Laboratory of Brain like Neuromorphic Devices and Systems of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, Hebei, China.

Neuromorphic computing holds immense promise for developing highly efficient computational approaches. Memristor-based artificial neurons, known for due to their straightforward structure, high energy efficiency, and superior scalability, which enable them to successfully mimic biological neurons with electrical devices. However, the reliability of memristors has always been a major obstacle in neuromorphic computing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!