Cells of all tissues in human body interact with their neighboring cells and components of the extracellular matrix thereby creating a unique 3D microenvironment. These interactions are realized through a complex network of biochemical and mechanical signals that are important in maintaining normal cellular homeostasis. Numerous attempts have been undertaken during the last two decades to develop 3D models for studying their properties and understanding the mechanisms of regulation of cell microenvironment in vivo. Cardiac spheroids (cardiospheres) are one these models of cardiac microenvironment. In this study we demonstrate that unique microenvironment formed in cardiospheres consists of stem/progenitor and mesenchymal cells surrounded by extracellular matrix proteins synthesized by these cells. TGF-β1 participates in the regulation of contraction of cells forming cardiospheres, promotes activation of the epithelial-mesenchymal transition and self-organization of cells, which leads to the formation of larger spheroids. Thereby, the effect of TGF-β1 on the cells of cardiospheres can serve as a model for studying the mechanisms of regulation of cardiac microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-021-05104-8 | DOI Listing |
Biomaterials
January 2025
Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. Electronic address:
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy.
Theranostics
January 2025
Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Medical and Surgical Sciences, Medical Oncology , Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly type of cancer, with an extremely low five-year overall survival rate. To date, current treatment options primarily involve various chemotherapies, which often prove ineffective and are associated with substantial toxicity. Furthermore, immunotherapies utilizing checkpoint inhibitors have shown limited efficacy in this context, highlighting an urgent need for novel therapeutic strategies.
View Article and Find Full Text PDFCells
December 2024
Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!