Exposure of human lymphocytes to silver nanoparticles (2-12 nm) reduced viability of cells and RNA, reduced activities of lactate dehydrogenase, glutathione reductase, and cytosolic calcium, increased ROS content in cells, affected surface architectonics of cells and changed hydrophobicity and charge of their plasma membranes. Silver nanoparticles triggered the process of cellular death by the mechanism of ETosis that is accompanied by chromatin release into the extracellular environment and formation of extracellular traps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-021-05096-5 | DOI Listing |
Nanoscale
January 2025
Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Front Oncol
January 2025
Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
Background: Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy.
View Article and Find Full Text PDFNanoscale
January 2025
Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) Chandigarh, 160036, India.
Herein, we provide insights into the size-dependent interactions of silver nanoparticles (AgNPs) with urease and their implications for enzyme inhibition. AgNPs with a size of 5 nm exhibited the strongest binding affinity of 66 nM, resulting in significant enzyme attachment, interfering enzyme conformation, and a consequent loss of activity. Mid-sized AgNPs, , 20 and 50 nm, exhibited binding affinities of 712 and 616 nM, causing only slight structural alterations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!