A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-AgS: a first-principles study. | LitMetric

In this paper, the electronic structure and transport properties of a ductile thermoelectric material α-Ag2S are examined using first-principles calculations combined with the Boltzmann transport equation within a constant relaxation-time approximation. The use of the exchange-correlation functional SCAN + rVV10 successfully describes the geometric and electronic structure of α-Ag2S with a direct bandgap value of 0.99 eV, which is consistent with the previous experimental observations. Based on the calculations of the formation energy of typical intrinsic defects, it is found that intrinsic defect formation greatly affects the conductivity of the system where silver vacancy and interstitial silver act as p-type and n-type defects, respectively. Large Seebeck coefficients at room-temperature, of around -760 μV K-1 for n-type and 1400 μV K-1 for p-type, are realized. It is also suggested that the doping of fully filled d-block elements such as Cu and Au not only maintained the Seebeck coefficients at high values but also improved electrical conductivity by more than 1.4 times, leading to the improvement of the power factor by up to 40% compared to the non-doped sample at low carrier concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp06624aDOI Listing

Publication Analysis

Top Keywords

intrinsic defect
8
defect formation
8
transport properties
8
properties ductile
8
ductile thermoelectric
8
thermoelectric material
8
electronic structure
8
seebeck coefficients
8
μv k-1
8
formation transition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!