With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed toward comparing information processing in humans and machines. These studies are an exciting chance to learn about one system by studying the other. Here, we propose ideas on how to design, conduct, and interpret experiments such that they adequately support the investigation of mechanisms when comparing human and machine perception. We demonstrate and apply these ideas through three case studies. The first case study shows how human bias can affect the interpretation of results and that several analytic tools can help to overcome this human reference point. In the second case study, we highlight the difference between necessary and sufficient mechanisms in visual reasoning tasks. Thereby, we show that contrary to previous suggestions, feedback mechanisms might not be necessary for the tasks in question. The third case study highlights the importance of aligning experimental conditions. We find that a previously observed difference in object recognition does not hold when adapting the experiment to make conditions more equitable between humans and machines. In presenting a checklist for comparative studies of visual reasoning in humans and machines, we hope to highlight how to overcome potential pitfalls in design and inference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980041 | PMC |
http://dx.doi.org/10.1167/jov.21.3.16 | DOI Listing |
PLoS One
January 2025
School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia.
Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.
Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.
PLoS One
January 2025
Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.
Survival analysis is critical in many fields, particularly in healthcare where it can guide medical decisions. Conventional survival analysis methods like Kaplan-Meier and Cox proportional hazards models to generate survival curves indicating probability of survival v. time have limitations, especially for long-term prediction, due to assumptions that all instances follow a general population-level survival curve.
View Article and Find Full Text PDFIn the current cybersecurity landscape, Distributed Denial of Service (DDoS) attacks have become a prevalent form of cybercrime. These attacks are relatively easy to execute but can cause significant disruption and damage to targeted systems and networks. Generally, attackers perform it to make reprisal but sometimes this issue can be authentic also.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
There is a growing need to document sociodemographic factors in electronic medical records to produce representative cohorts for medical research and to perform focused research for potentially vulnerable populations. The objective of this work was to assess the content of family physicians' electronic medical records and characterize the quality of the documentation of sociodemographic characteristics. Descriptive statistics were reported for each sociodemographic characteristic.
View Article and Find Full Text PDFSci Adv
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!