Sperm-oocyte binding initiates an outside-in signaling event in the mouse oocyte that triggers recruitment and activation of the cytosolic protein kinase PTK2B in the cortex underlying the bound sperm. While not involved in gamete fusion, PTK2B activity promotes actin remodeling events important during sperm incorporation. However, the mechanism by which sperm-oocyte binding activates PTK2B is unknown, and the present study examined the possibility that sperm interaction with specific oocyte surface proteins plays an important role in PTK2B activation. Imaging studies revealed that as IZUMO1R and CD9 became concentrated at the sperm binding site, activated (phosphorylated) PTK2B accumulated in the cortex underlying the sperm head and in microvilli partially encircling the sperm head. In order to determine whether IZUMO1R and/or CD9 played a significant role in PTK2B recruitment and activation at the sperm binding site, the ability of oocytes null for Izumo1r or Cd9, to initiate an increase in PTK2B content and activation was tested. The results revealed that IZUMO1R played a minor role in PTK2B activation and had no effect on actin remodeling; however, CD9 played a very significant role in PTK2B activation and subsequent actin remodeling at the sperm binding site. These findings suggest the possibility that interaction of sperm surface proteins with CD9 or CD9-associated oocyte proteins triggers PTK2B activation at the sperm binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182024PMC
http://dx.doi.org/10.1093/biolre/ioab048DOI Listing

Publication Analysis

Top Keywords

ptk2b activation
20
sperm binding
20
actin remodeling
16
role ptk2b
16
binding site
16
izumo1r cd9
12
ptk2b
11
sperm
11
activation
8
activation actin
8

Similar Publications

Endothelial cell Ass1 inhibits arteriosclerotic calcification in diabetes mellitus.

Biomed Pharmacother

December 2024

Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China. Electronic address:

Endothelial cell (EC) dysfunction is an important pathological feature of early calcification in diabetic plaques. Argininosuccinic synthase 1 (Ass1) is important in protecting EC activity. Therefore, this study aimed to explore the effect of endothelial Ass1 on calcification in diabetic plaques and its potential regulatory mechanism.

View Article and Find Full Text PDF

Selective Pyk2 inhibition enhances bone restoration through SCARA5-mediated bone marrow remodeling in ovariectomized mice.

Cell Commun Signal

November 2024

Department of Oral Pathobiological Science, Microbiology, Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan.

Understanding the intricate cellular interactions involved in bone restoration is crucial for developing effective strategies to promote bone healing and mitigate conditions such as osteoporosis and fractures. Here, we provide compelling evidence supporting the anabolic effects of a pharmacological Pyk2 inhibitor (Pyk2-Inh) in promoting bone restoration. In vitro, Pyk2 signaling inhibition markedly enhances alkaline phosphatase (ALP) activity, a hallmark of osteoblast differentiation, through activation of canonical Wnt/β-catenin signaling.

View Article and Find Full Text PDF

Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells under various stresses causing age-related disorders. This study investigated the role of D-galactose in inducing premature senescence of neural stem cells (NSCs) and the genes involved in this process. After NSC isolation and proliferation, senescence was induced with 10, 20, or 30 µM concentrations of D-galactose for 24 h.

View Article and Find Full Text PDF

Background: Proline-rich tyrosine kinase 2 (PYK2) is involved in the occurrence, proliferation, migration, and invasion of various tumors. However, few studies have reported the role of PYK2 in colorectal cancer (CRC).

Aim: To explore the effects of PYK2 on CRC metastasis and elucidate the detailed molecular mechanisms involved.

View Article and Find Full Text PDF

Podosome Nucleation Is Facilitated by Multivalent Interactions between Syk and ITAM-containing Membrane Complexes.

J Immunol

October 2024

Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.

Immune cells survey their microenvironment by forming dynamic cellular protrusions that enable chemotaxis, contacts with other cells, and phagocytosis. Podosomes are a unique type of protrusion structured by an adhesive ring of active integrins that surround an F-actin-rich core harboring degradative proteases. Although the features of podosomes, once-established, have been well defined, the steps that lead to podosome formation remain poorly understood by comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!