Exploring two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials of physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted to be kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure. The 2D AlSb exhibits a band gap of 0.93 eV the predicted 1.06 eV, which is substantially smaller than the 1.6 eV of bulk. We also attempt the less-stable InSb DLHC structure; however, it grows into bulk islands instead. The successful growth of a DLHC material here demonstrates the feasibility for the realization of a large family of 2D DLHC traditional semiconductors with characteristic excitonic, topological, and electronic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c00470DOI Listing

Publication Analysis

Top Keywords

dlhc structure
12
alsb double-layer
8
double-layer honeycomb
8
successful growth
8
imaging scanning
8
structure
5
dlhc
5
realization alsb
4
honeycomb structure
4
structure robust
4

Similar Publications

Strain-tunable electronic anisotropy of the AlSb double-layer honeycomb structure.

Phys Chem Chem Phys

October 2024

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.

Two-dimensional (2D) materials show promising applications in nanoelectronic devices due to their excellent physical and chemical properties, large specific surface area, and good flexibility. 2D AlSb, a representative of a new class of two-dimensional materials with a double-layer honeycomb (DLHC) structure was recently obtained in experiments and was reported to be a direct band gap semiconductor. Strain engineering is an effective way of tuning the properties of 2D materials.

View Article and Find Full Text PDF

In this study, the freestanding form of ultra-thin CuI crystals, which have recently been synthesized experimentally, and their strain-dependent properties are investigated by means of density functional theory calculations. Structural optimizations show that CuI crystallizes in a double-layered hexagonal crystal (DLHC) structure. While phonon calculations predict that DLHC CuI crystals are dynamically stable, subsequent vibrational spectrum analyzes reveal that this structure has four unique Raman-active modes, allowing it to be easily distinguished from similar ultra-thin two-dimensional materials.

View Article and Find Full Text PDF

Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material.

Materials (Basel)

November 2022

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Two-dimensional (2D) materials are no doubt the most widely studied nanomaterials in the past decade. Most recently, a new type of 2D material named the double-layer honeycomb (DLHC) structure opened a door to achieving a series of 2D materials from traditional semiconductors. However, as a newly developed material, there still lacks a timely understanding of its structure, property, applications, and underlying mechanisms.

View Article and Find Full Text PDF

Investigations on structural, electronic and optical properties of ZnO in two-dimensional configurations by first-principles calculations.

J Phys Condens Matter

November 2022

School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, Shiyan, Hubei Province 442002, People's Republic of China.

The electronic structures and optical properties of two-dimensional (2D) ZnO monolayers in a series of configurations were systematically investigated by first-principles calculations with Hubbardevaluated by the linear response approach. Three types of 2D ZnO monolayers, as planer hexagonal-honeycomb (Plan), double-layer honeycomb (Dlhc), and corrugated tetragonal (Tile) structures, show a mechanical and dynamical stability, while the Dlhc-ZnO is the most energetically stable configuration and Plan-ZnO is the second one. Each 2D ZnO monolayer behaves as a semiconductor with that Plan-, Dlhc-ZnO have a direct band gap of 1.

View Article and Find Full Text PDF

Exploring two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials of physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted to be kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!