We hypothesized that the secretion of inflammatory mediators from synoviocytes affects the chondrocyte homeostasis of articular cartilage. This study was a preliminary attempt to elucidate the molecular mechanisms by which soluble mediators obtained from activated synoviocytes induce oxidative stress and inflammation in chondrocytes. We measured the concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), nerve growth factor (NGF), superoxide anion (O), hydrogen peroxide (HO), and nitric oxide (NO) from articular human cells. First, we created a conditional basal medium by exposing synoviocytes (HS) to monosodium urate crystals (CBM). The chondrocytes were exposed to either CBM (CCM), urate crystals directly (CMSU), or remained untreated (CC) as a negative control. Data were analyzed by ANOVA tests; Bonferroni test was performed for multiple comparisons between groups. Interestingly, we observed that mediators of inflammation and oxidative stress were significantly higher in CCM than CMSU and CC groups (P<0.01). The specific concentrations were as follows: 19.85 ng/mL of IL-6, 9.79 ng/mL of IL-8, 5.17 ng/mL of NGF, and 11.91 ng/mL of MCP-1. Of note, we observed the same trend for reactive oxygen and nitrogen species (P<0.001). Soluble mediators secreted by synoviocytes after being activated with MSU crystals (as observed in individuals who present gout attacks) trigger chondrocyte activation intensifying the articular inflammatory, oxidative, and pain states that damage cartilage in OA; this damage is more severe even when compared to HC directly exposed to monosodium urate crystals. Key Points • The molecular relation between MSU depositions and cartilage damage could be mediated by pro-inflammatory soluble mediators and oxidative molecules. • The secretion of pro-inflammatory mediators by activated synoviocytes is more harmful to chondrocytes than a direct activation in the chondrocyte culture. • Under this model, there is an important imbalance in the matrix homeostasis due to changes in several chemokines, cytokines, and other factors such as NGF, as well as oxidative mediators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10067-021-05676-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!