Smooth muscle cells (SMCs) are critical players in cardiovascular disease development and undergo complex phenotype switching during disease progression. However, SMC phenotype is difficult to assess and track in co-culture studies. To determine the contractility of SMCs embedded within collagen hydrogels, we performed polarized light imaging and subsequent analysis based on Mueller matrices. Measurements were made both in the absence and presence of endothelial cells (ECs) in order to establish the impact of EC-SMC communication on SMC contractility. The results demonstrated that Mueller polarimetric imaging is indeed an appropriate tool for assessing SMC activity which significantly modifies the hydrogel retardance in the presence of ECs. These findings are consistent with the idea that EC-SMC communication promotes a more contractile SMC phenotype. More broadly, our findings suggest that Mueller polarimetry can be a useful tool for studies of spatial heterogeneities in hydrogel remodeling by SMCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960740PMC
http://dx.doi.org/10.1038/s41598-021-85164-yDOI Listing

Publication Analysis

Top Keywords

mueller polarimetric
8
polarimetric imaging
8
smooth muscle
8
muscle cells
8
smc phenotype
8
ec-smc communication
8
mueller
4
imaging fast
4
fast macroscopic
4
macroscopic mapping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!