Insect societies require an effective communication system to coordinate members' activities. Although eusocial species primarily use chemical communication to convey information to conspecifics, there is increasing evidence suggesting that vibroacoustic communication plays a significant role in the behavioural contexts of colony life. In this study, we sought to determine whether stridulation can convey information in ant societies. We tested three main hypotheses using the Mediterranean ant Crematogaster scutellaris: (i) stridulation informs about the emitter'caste; (ii) workers can modulate stridulation based on specific needs, such as communicating the profitability of a food resource, or (iii) behavioural contexts. We recorded the stridulations of individuals from the three castes, restrained on a substrate, and the signals emitted by foragers workers feeding on honey drops of various sizes. Signals emitted by workers and sexuates were quantitatively and qualitatively distinct as was stridulation emitted by workers on different honey drops. Comparing across the experimental setups, we demonstrated that signals emitted in different contexts (restraining vs feeding) differed in emission patterns as well as certain parameters (dominant frequency, amplitude, duration of chirp). Our findings suggest that vibrational signaling represents a flexible communication channel paralleling the well-known chemical communication system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970987 | PMC |
http://dx.doi.org/10.1038/s41598-021-84925-z | DOI Listing |
PLoS One
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, 105-8461, Tokyo, Japan.
Of the ions involved in myocardial function, Ca is the most important. Ca is crucial to the process that allows myocardium to repeatedly contract and relax in a well-organized fashion; it is the process called excitation-contraction coupling. In order, therefore, for accurate comprehension of the physiology of the heart, it is fundamentally important to understand the detailed mechanism by which the intracellular Ca concentration is regulated to elicit excitation-contraction coupling.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:
The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.
View Article and Find Full Text PDFBackground: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!