Background: Nowadays, some studies have shown the effect of hypericin on cancer cells. However, considering the cytotoxicity of this plant and signs of anticancer activity in the plant, unfortunately, there is still no proper treatment for leukemia cancer cells. Therefore, the present study aims to evaluate the anticancer effect of hypericin in the treatment of leukemia cancer and its possible mechanism of action.

Methods: In this study, the K562 cell line was treated with different concentrations of hypericin for 24 and 48 h. Detection of cell death was performed by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide assay. The rate of cell apoptosis was measured by Annexin V/propidium iodide assay using flow cytometry. The expression of Bax, Bcl2, Myc, Mdm2, and P53 genes was evaluated by real-time polymerase chain reaction test, and immunocytochemistry (ICC) analysis was used for further evaluation of P53.

Results: The results showed that hypericin has a dose-dependent cytotoxic effect on the K562 (in much less dose compared with cisplatin). According to flow cytometry results, cell apoptosis after exposure to hypericin for 24 h was 53%, and ICC analysis on p53 confirmed this. Furthermore, after 24 h of exposure to hypericin with IC50 concentration, the expression of P53 and Bax genes increased and the expression of the Bcl2, Myc, and Mdm2 gene decreased.

Conclusion: The results showed that hypericin exerts its cytotoxicity on K562 cancer cells by downregulating Mdm2 and Myc. Based on the data acquired from the present study and many investigations till now, hypericin can be a good option for leukemia cancer cells treatment.

Download full-text PDF

Source
http://dx.doi.org/10.4103/jcrt.JCRT_826_19DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
leukemia cancer
12
hypericin
9
treatment leukemia
8
cell apoptosis
8
flow cytometry
8
bcl2 myc
8
myc mdm2
8
icc analysis
8
exposure hypericin
8

Similar Publications

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

Gene Fusion Detection in Long-Read Transcriptome Datasets from Multiple Cancer Cell Lines.

Front Biosci (Landmark Ed)

December 2024

Graduate School of Information Science and Technology, Osaka University, 565-0871 Suita, Osaka, Japan.

Background: Fusion genes are important biomarkers in cancer research because their expression can produce abnormal proteins with oncogenic properties. Long-read RNA sequencing (long-read RNA-seq), which can sequence full-length mRNA transcripts, facilitates the detection of such fusion genes. Several tools have been proposed for detecting fusion genes in long-read RNA-seq datasets derived from cancer cells.

View Article and Find Full Text PDF

The Warburg Effect: Is it Always an Enemy?

Front Biosci (Landmark Ed)

November 2024

Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.

The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!