Treatment of hepatocellular carcinoma (HCC) is currently challenging. Cancer-associated fibroblasts (CAFs) promote the malignancy of HCC cells via production of cytokines. Conophylline (CnP), a vinca alkaloid obtained from leaves, has been reported to suppress activation of hepatic stellate cells and liver fibrosis in rats. We examined the efficacy of CnP in suppressing tumor growth in HCC. Specifically, we investigated whether CnP could inhibit CAFs, which were derived from HCC tissues and Same as previous reports, CAFs promoted proliferative and invasive ability of HCC cells. CnP suppressed α-smooth muscle actin expression of CAFs, and inhibited their cancer-promoting effects. CnP significantly suppressed CAFs producting cytokines such as IL6, IL8, C-C motif chemokine ligand 2, angiogenin, and osteopontin (OPN). Combined therapy with sorafenib and CnP against HCC cells and CAFs showed to inhibit tumor growth the most compared with controls and single treatment with CnP or sorafenib. Transcriptome analysis revealed that GPR68 in CAFs was strongly suppressed by CnP. The cancer-promoting effects of cytokines were eliminated by knockdown of GPR68 in CAFs. CnP inhibited the HCC-promoting effects of CAFs by suppressing several HCC-promoting cytokines secreted by CAFs expressing GPR68. Combination therapy with CnP and existing anticancer agents may be a promising strategy for treating refractory HCC associated with activated CAFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-20-0150 | DOI Listing |
Mol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.
Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.
Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.
BMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA.
One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!