Predictable chronic stress modulates behavioral and neuroendocrine phenotypes of zebrafish: Influence of two homotypic stressors on stress-mediated responses.

Comp Biochem Physiol C Toxicol Pharmacol

Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA. Electronic address:

Published: September 2021

The zebrafish (Danio rerio) has been considered a suitable model organism to assess the evolutionarily conserved bases of behavioral and neuroendocrine responses to stress. Depending on the nature of the stressor, prolonged stress may elicit habituation or evoke long-term changes in the central nervous systems (CNS) often associated with various neuropsychiatric disorders. Conspecific alarm substance (CAS) and net chasing (NC) constitute chemical and physical stressors, respectively, which cause aversive behaviors and physiological changes in fishes. Here, we investigate whether predictable chronic stress (PCS) using two homotypic stressors differently modulates behavioral and physiological responses in zebrafish. PCS-CAS or PCS-NC were performed for 14 days, 2-times daily, while locomotion, exploratory activity, anxiety-like behaviors, and whole-body cortisol levels were measured on day 15. PCS-CAS reduced distance traveled, the number of transitions and time in top area, as well as increased the latency to enter the top in the novel tank test. In the light/dark test, CAS-exposed fish showed decreased time spent in lit area, shorter latency to enter the dark area, and increased risk assessments. PCS-CAS also increased whole-body cortisol levels in zebrafish. Although PCS-NC reduced the latency to enter the dark area, whole-body cortisol levels did not change. Moreover, acute experiments revealed that both CAS and NC promoted anxiogenesis and increased cortisol levels, suggesting habituation to stress following PCS-NC. Overall, our novel findings demonstrate that PCS induces behavioral and physiological changes in zebrafish depending on the nature of the stressor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2021.109030DOI Listing

Publication Analysis

Top Keywords

cortisol levels
16
whole-body cortisol
12
latency enter
12
predictable chronic
8
chronic stress
8
modulates behavioral
8
behavioral neuroendocrine
8
homotypic stressors
8
responses zebrafish
8
depending nature
8

Similar Publications

A feasibility study on cortisol and cortisone as biomarkers for psychological stress in wastewater-based epidemiology.

Water Res

December 2024

College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, , 116026, China. Electronic address:

Psychological stress has a significant impact on individuals' quality of life and health. Traditionally, psychological stress assessment relies on self-reported tools such as the Perceived Stress Scale (PSS), which are inherently subjective. This study aims to evaluate the feasibility of using wastewater-based epidemiology (WBE) to assess cortisol and cortisone as biomarkers for psychological stress.

View Article and Find Full Text PDF

Seventy-two non-lactating, pregnant Angus cows (initial body weight (BW) = 637 ± 13 kg; body condition score (BCS) = 5.5 ± 0.07 yr; and age = 6.

View Article and Find Full Text PDF

The study aimed to evaluate the analgesic efficacy of tapentadol in horses, by determining plasma serotonin concentration and adrenocortical response, as biomarkers of pain stress in chronic joint disorders. Thirty-six horses (20 females and 16 males) were divided into three groups of 12 subjects each: group A, osteoarthritis (OA), grade 3-4 lameness; group B, OA, grade 5 lameness; and group C, no OA, no lameness, were enrolled. The orthopedic examination included flexion tests, and radiological and ultrasound examinations.

View Article and Find Full Text PDF

Cortisol and C-reactive protein (CRP) regulation in severe mental disorders.

Psychoneuroendocrinology

December 2024

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK. Electronic address:

Background: People with schizophrenia (SZ) and bipolar disorder (BD) show abnormalities in the biological stress system and low-grade inflammation. However, whether the hypothalamic-pituitary-adrenal (HPA) axis-immune regulation is disrupted in SZ and BD, is yet to be determined.

Methods: Cortisol and C-reactive protein (CRP) were measured in blood samples collected at or before 10 am in participants with SZ (N = 257), BD (N = 153), and healthy controls (N = 40).

View Article and Find Full Text PDF

Background: There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma.

Methods: We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (N = 312 and N = 454).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!