Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sub-lethal exposure of dichlorvos induces oxidative stress, consequent genetic instability and apoptosis coupled with impairments in biochemical, histopathological and transcription of genes in Channa punctatus. Exposure of 5% (0.041 mg/L; E2) and 10% (0.082 mg/L; E3) of 96 h-LC of dichlorvos significantly (p < 0.05) elevated the reactive oxygen species (ROS) generation and activities of SOD and CAT, as compared to control (E1) after 30 d. The maximum reduction in reduced glutathione (GSH) was recorded in the liver (18.53 ± 0.81 μg/mg of protein) and kidney (19.32 ± 0.97 μg/mg of protein); while the total protein contents were also found reduced, 278.38 ± 8.40 μg/mL (liver) and 248.44 ± 7.28 μg/mL (kidney), after 30 days in E3, in comparison to respective controls. Further, significant (p < 0.05) induction in micronuclei (MN) and apoptotic cells (AC), in a dose- and exposure-based manner were also recorded. Moreover, a significant (p < 0.05) up-regulation of p53 (2.51-fold in liver), bax (2.03-fold in liver; 1.99-fold in kidney) and casp3a (2.26-fold in liver; 2.10-fold in kidney) together with an elevated expression of cat (1.73-fold in liver; 1.12-fold in kidney), p53 (1.27-fold in kidney) and apaf-1 (1.72-fold in liver) in fish exposed to higher dose of dichlorvos for 30 d evidently reflects geno-toxicological potential of referenced pesticide. Disturbed biochemical and molecular parameters evince that the fish experienced oxidative stress as is further supported by prominent pathological observations in liver and kidney. Findings are, thus, helpful in organ-specific molecular scanning against aquatic toxicants like dichlorvos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2021.109032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!