Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macronutrient composition modulates plasma amino acids that are precursors of neurotransmitters and can impact brain function and decisions. Neurotransmitter serotonin has been shown to regulate not only food intake, but also economic decisions. We investigated whether an acute nutrition-manipulation inducing plasma tryptophan fluctuation affects brain function, thereby affecting risky decisions. Breakfasts differing in carbohydrate/protein ratios were offered to test changes in risky decision-making while metabolic and neural dynamics were tracked. We identified that a high-carbohydrate/protein breakfast increased plasma tryptophan/LNAA (large neutral amino acids) ratio which mapped to individual risk propensity changes. The nutrition-manipulation and tryptophan/LNAA fluctuation effects on risk propensity changes were further modulated by individual differences in body fat mass. Using fMRI, we further identified activation in the parietal lobule during risk-processing, of which activities 1) were sensitive to the tryptophan/LNAA fluctuation, 2) were modulated by individual's body fat mass, and 3) predicted the risk propensity changes in decision-making. Our results provide evidence for a personalized nutrition-driven modulation on human risky decision and its metabolic and neural mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.117951 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!