A critical question regards the neural basis of complex cognitive skill acquisition. One extensively studied skill is navigation, with evidence suggesting that humans vary widely in navigation abilities. Yet, data supporting the neural underpinning of these individual differences are mixed. Some evidence suggests robust structure-behavior relations between hippocampal volume and navigation ability, whereas other experiments show no such correlation. We focus on several possibilities for these discrepancies: 1) volumetric hippocampal changes are relevant only at the extreme ranges of navigational abilities; 2) hippocampal volume correlates across individuals but only for specific measures of navigation skill; 3) hippocampal volume itself does not correlate with navigation skill acquisition; connectivity patterns are more relevant. To explore this third possibility, we present a model emphasizing functional connectivity changes, particularly to extra-hippocampal structures. This class of models arises from the premise that navigation is dynamic and that good navigators flexibly solve spatial challenges. These models pave the way for research on other skills and provide more precise predictions for the neural basis of skill acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402939 | PMC |
http://dx.doi.org/10.1016/j.neubiorev.2021.03.012 | DOI Listing |
Alzheimers Dement
December 2024
The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Chong Qing, China.
Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.
Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).
Alzheimers Dement
December 2024
The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Chong Qing, China.
Background: The mesolimbic system plays a crucial role in weight regulation and cognition. Previous studies suggest that the pathology of Alzheimer's disease (AD) can lead to the atrophy of the mesolimbic system and body mass index (BMI) decline. It remains unknown whether BMI is associated with the the mesolimbic system in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) denotes TDP-43 deposition in older age and is consequential for cognitive function. Currently there is no way to identify LATE-NC during life. Some forms of TDP-43 deposition in younger age, related to frontotemporal dementia (FTD), are associated with pronounced asymmetrical atrophy of the temporal lobe.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mayo Clinic Florida, Jacksonville, FL, USA.
Background: We previously identified the novel mechanism of pathological tau transfer via extracellular vesicles (EVs) in Alzheimer's disease (AD). Targeting EV secretion to mitigate tau transfer is therefore a promising therapeutic approach for AD. P2X purinoreceptor 7 (P2RX7), an ATP-gated cationic channel, regulates microvesicle shedding or secretion of multivesicular body-derived exosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!