Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2021.148411DOI Listing

Publication Analysis

Top Keywords

complexome profiling
20
complexome
8
profiling data
8
data complexome
8
protein complexes
8
data
7
profiling
5
cedar
4
cedar online
4
resource
4

Similar Publications

COA5 has an essential role in the early stage of mitochondrial complex IV assembly.

Life Sci Alliance

March 2025

https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.

View Article and Find Full Text PDF
Article Synopsis
  • Phospholamban (PLN) is a protein that plays a crucial role in heart muscle function by regulating calcium levels, and a specific mutation (R14Δ-PLN) leads to severe heart muscle disease that doesn't respond well to standard treatments.
  • Researchers are using a technique called complexome profiling (CP) to analyze how this mutation affects protein complexes in the hearts of mice, but existing methods face challenges because most data is based on cancer cells rather than heart cells.
  • To overcome this, a new analysis approach named PERCOM was developed, which identified 296 proteins with altered behaviors in mutant heart tissue, particularly affecting mitochondrial and intercalated disk supercomplexes.
View Article and Find Full Text PDF

Combined oxidative phosphorylation deficiency (COXPD) is a rare multisystem disorder which is clinically and genetically heterogeneous. Genome sequencing identified biallelic variants in individuals from five unrelated families with presentations ranging from Perrault syndrome (primary ovarian insufficiency and sensorineural hearing loss) to severe childhood onset of leukodystrophy, learning disability, microcephaly and retinal dystrophy. Complexome profiling of fibroblasts from affected individuals revealed reduced levels of the small and, a more pronounced reduction of, the large mitochondrial ribosomal subunits.

View Article and Find Full Text PDF

Complexome profiling is an experimental approach to identify interactions by integrating native separation of protein complexes and quantitative mass spectrometry. In a typical complexome profile, thousands of proteins are detected across typically ≤100 fractions. This relatively low resolution leads to similar abundance profiles between proteins that are not necessarily interaction partners.

View Article and Find Full Text PDF

Protein assemblies in the chloroplast compartment.

Front Plant Sci

August 2024

Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.

Introduction: Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions.

Materials And Methods: For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!