Amyotrophic Lateral Sclerosis (ALS) is a deadly neuromuscular disorder caused by progressive motor neuron loss in the brain and spinal cord. Over the past decades, a number of genetic mutations have been identified that cause or are associated with ALS disease progression. Numerous genes harbor ALS mutations, and they encode proteins displaying a wide range of physiological functions, with limited overlap. Despite the divergent functions, mutations in these genes typically trigger protein aggregation, which can confer gain- and/or loss-of-function to a number of essential cellular processes. Nuclear processes such as mRNA splicing and the response to DNA damage are significantly affected in ALS patients. Cytoplasmic organelles such as mitochondria are damaged by ALS mutant proteins. Processes that maintain cellular homeostasis such as autophagy, nonsense-mediated mRNA decay and nucleocytoplasmic transport, are also impaired by ALS mutations. Here, we review the multiple mechanisms by which mutations in major ALS-associated genes, such as and , lead to impairment of essential cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078687 | PMC |
http://dx.doi.org/10.1080/15384101.2021.1886661 | DOI Listing |
Cell Death Discov
January 2025
Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.
View Article and Find Full Text PDFBrain
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.
View Article and Find Full Text PDFMol Ther
January 2025
Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:
Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.
View Article and Find Full Text PDFNat Neurosci
January 2025
Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!