Aims: Peripheral artery disease is a complication of diabetes leading to critical hindlimb ischemia. Diabetes-induced inhibition of VEGF actions is associated with the activation of protein kinase Cδ (PKCδ). We aim to specifically investigate the role of PKCδ in endothelial cell (EC) function and VEGF signaling.

Methods: Nondiabetic and diabetic mice, with () or without () endothelial deletion of PKCδ, underwent femoral artery ligation. Blood flow reperfusion was assessed up to 4 weeks post-surgery. Capillary density, EC apoptosis and VEGF signaling were evaluated in the ischemic muscle. Src homology region 2 domain-containing phosphatase-1 (SHP-1) phosphatase activity was assessed using primary ECs.

Results: Ischemic muscle of diabetic mice exhibited reduced blood flow reperfusion and capillary density while apoptosis increased as compared to nondiabetic mice. In contrast, blood flow reperfusion and capillary density were significantly improved in diabetic mice. VEGF signaling pathway was restored in diabetic mice. The deletion of PKCδ in ECs prevented diabetes-induced VEGF unresponsiveness through a reduction of SHP-1 phosphatase activity.

Conclusions: Our data provide new highlights in mechanisms by which PKCδ activation in EC contributed to poor collateral vessel formation, thus, offering novel therapeutic targets to improve angiogenesis in the diabetic limb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481738PMC
http://dx.doi.org/10.1177/1479164121999033DOI Listing

Publication Analysis

Top Keywords

blood flow
16
flow reperfusion
16
diabetic mice
16
deletion pkcδ
12
capillary density
12
endothelial deletion
8
density apoptosis
8
vegf signaling
8
ischemic muscle
8
shp-1 phosphatase
8

Similar Publications

Introduction: Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT.

View Article and Find Full Text PDF

Association between daily sesame consumption and the risk of sarcopenia in elderly adults: the TCLSIH cohort study.

J Nutr

January 2025

School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. Electronic address:

Background: Sarcopenia is an age-related, progressive, and systemic skeletal muscle disorder that can lead to numerous adverse outcomes. Animal studies have shown that sesame can enhance skeletal muscle blood flow and improve physical performance. However, no studies have yet explored the association between sesame consumption and the incidence of sarcopenia in the general population.

View Article and Find Full Text PDF

Identifying the appropriate measurement environment for laser speckle flowmetry of cerebral blood flow in rats.

Brain Res

January 2025

Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.

Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.

View Article and Find Full Text PDF

P2Y12 receptor-independent antiplatelet mechanism of cryptotanshinone: network pharmacology and experimental validation of multi-target signaling pathways.

J Ethnopharmacol

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug RandD, Guizhou Medical University, Guiyang, 561113, China. Electronic address:

Ethnopharmacological Relevance: Cryptotanshinone serves as the principal bioactive constituent of Salvia miltiorrhiza Bunge, possesses a wide range of pharmacological activities. Salvia miltiorrhiza Bunge, a long-standing therapeutic agent in traditional Chinese medicine (TCM) practice, is renowned for its efficacy in enhancing blood circulation and alleviating blood stasis and infarction, thereby treating cardiovascular and cerebrovascular diseases.

Aim Of The Study: Platelet activation, when excessive or aberrant, poses a significant risk, catalyzing the onset of various thrombotic disorders.

View Article and Find Full Text PDF

Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!