A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions.

J Chem Phys

ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.

Published: March 2021

A dissipative particle dynamics (DPD) model is developed and demonstrated for studying dynamics in colloidal rod suspensions. The solvent is modeled as conventional DPD particles, while individual rods are represented by a rigid linear chain consisting of overlapping solid spheres, which interact with solvent particles through a hard repulsive potential. The boundary condition on the rod surface is controlled using a surface friction between the solid spheres and the solvent particles. In this work, this model is employed to study the diffusion of a single colloid in the DPD solvent and compared with theoretical predictions. Both the translational and rotational diffusion coefficients obtained at a proper surface friction show good agreement with calculations based on the rod size defined by the hard repulsive potential. In addition, the system-size dependence of the diffusion coefficients shows that the Navier-Stokes hydrodynamic interactions are correctly included in this DPD model. Comparing our results with experimental measurements of the diffusion coefficients of gold nanorods, we discuss the ability of the model to correctly describe dynamics in real nanorod suspensions. Our results provide a clear reference point from which the model could be extended to enable the study of colloid dynamics in more complex situations or for other types of particles.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0041285DOI Listing

Publication Analysis

Top Keywords

diffusion coefficients
12
dissipative particle
8
particle dynamics
8
colloidal rod
8
rod suspensions
8
dpd model
8
solid spheres
8
solvent particles
8
hard repulsive
8
repulsive potential
8

Similar Publications

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.

View Article and Find Full Text PDF

Mapping the Energy Carrier Diffusion Tensor in Perovskite Semiconductors.

ACS Nano

January 2025

Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.

View Article and Find Full Text PDF

This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.

View Article and Find Full Text PDF

Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!