Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approach is a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in DO confined in hydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on the silica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. This appears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated with the weaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0040739DOI Listing

Publication Analysis

Top Keywords

raman spectra
12
amorphous silica
8
silica slit
8
slit pores
8
silica surface
8
spectra
5
silica
5
simulations raman
4
spectra water
4
water confined
4

Similar Publications

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.

View Article and Find Full Text PDF

Raman spectra of pyromorphite, vanadinite and mimetite at high pressures and high temperatures.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 Guizhou, China. Electronic address:

High-pressure and high-temperature Raman spectra of natural pyromorphite, vanadinite and mimetite were measured up to 11 GPa and 973 K, respectively. No phase transition was observed within the temperature and pressure ranges in this study. Raman modes for pyromorphite, vanadinite and mimetite vary with temperature or pressure linearly.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications.

View Article and Find Full Text PDF

We report the radiation-induced darkening (RD) effect caused by X-ray radiation and the bleaching effect caused by D/H/N loading in self-developed Yb-doped large mode-area photonic crystal fibers (LMA PCFs). The decrease in the slope efficiency caused by irradiation decays exponentially with an increase in the X-ray radiation doses, and the radiation-induced gain variation (RIGV) showed a linear decay trend with increasing irradiation doses. The slope efficiency of Yb-doped LMA PCF, which significantly degraded from 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!