Octodon degus is said to be one of the most human-like rodents because of its improved cognitive function. Focusing on its high sociality, we cloned and characterized some sociality-related genes of degus, in order to establish degus as a highly socialized animal model in molecular biology. We cloned degus Neurexin and Neuroligin as sociality-related genes, which are genetically related to autism spectrum disorder in human. According to our results, amino acid sequences of Neurexin and Neuroligin expressed in degus brain, are highly conserved to that of human sequences. Most notably, degus Neuroligin4 is highly similar to human Neuroligin4X, which is one of the most important autism-related genes, whereas mouse Neuroligin4 is known to be poorly similar to human Neuroligin4X. Furthermore, our work also indicated that testosterone directly binds to degus Neurexin and intercepts intercellular Neurexin-Neuroligin binding. Moreover, it is of high interest that testosterone is another key molecule of the higher incidence of autism in male. These results indicated that degus has the potential for animal model of sociality, and furthermore may promote understanding toward the pathogenic mechanism of autism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.03.015 | DOI Listing |
Cell Regen
January 2025
Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.
View Article and Find Full Text PDFMol Neurobiol
November 2024
Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1).
View Article and Find Full Text PDFSingle-pass transmembrane proteins neuroligin (NL) and neurexin (NRX) constitute a pair of synaptic adhesion molecules (SAMs) that are essential for the formation of functional synapses. Binding affinities vary by ∼ 1000 folds between arrays of NL and NRX subtypes, which contribute to chemical and spatial specificities. Current structures are obtained with truncated extracellular domains of NL and NRX and are limited to the higher-affinity NL1/4-NRX complexes.
View Article and Find Full Text PDFJ Neurosci
December 2024
Center for Neuroscience, University of California, Davis, Davis, California 95618
J Physiol
September 2024
Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany.
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!