AI Article Synopsis

  • The study investigates how a chemically modified stationary phase (CMSP) can be used to analyze binding abilities of compounds.
  • Three types of silica-based CMSPs are prepared and characterized for use in liquid chromatography (LC) columns, which helps estimate retention factors of specific compounds.
  • The analysis reveals that breaking down total retention into structure-specific factors provides a clearer understanding of the binding mechanisms, highlighting the limitations of relying only on total retention values.

Article Abstract

The total solute retention by a chemically modified stationary phase (CMSP) has been shown several times to be a potential tool for studying the binding abilities of the bound compound. In this article, we present a methodology for the deconvolution of the total retention into structure-specific contributions. Three complementary silica-based CMSPs were prepared: 1) non-modified silica, 2) silica modified by syn-bis-Tröger's base (a molecular tweezer) and 3) silica modified by anti-bis-Tröger's base (a non-tweezer molecule). These were characterized by elemental analysis and Raman spectroscopy, and used to assemble liquid chromatography (LC) columns. The total retention factors were estimated for electron-deficient nitro- and cyano-derivatives of benzene in both normal and reverse elution modes. The total retention factor was considered to be the sum of structure-specific retention factors, each related to the affinity (the binding constant) of a specific structure (the binding site), and its content in the modified silica, as defined for weak-affinity chromatography (WAC). The obtained structure-specific contributions are in line with the binding studies of ligands in solution. They reveal details of the retention mechanism, suggesting a more suitable attachment of ligands, and expose the shortcomings of evaluations based solely on the total retentions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462030DOI Listing

Publication Analysis

Top Keywords

total retention
12
methodology deconvolution
8
deconvolution total
8
total solute
8
solute retention
8
retention chemically
8
chemically modified
8
modified stationary
8
structure-specific contributions
8
silica modified
8

Similar Publications

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Berberine‑calcium alginate-coated macrophage membrane-derived nanovesicles for the oral treatment of ulcerative colitis.

Int J Biol Macromol

January 2025

Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China. Electronic address:

In this study, we developed calcium alginate-coated nanovesicles derived from macrophage membranes loaded with berberine (Ber@MVs-CA) for the oral treatment of ulcerative colitis (UC). Ber@MVs-CA demonstrates resistance to gastric acid and controlled drug release in the colonic pH environment, while actively targeting sites of ulcerative colitis injury. pH-responsive release of Ber in Ber@MVs-CA was confirmed through in vitro release experiments.

View Article and Find Full Text PDF

Coal-bearing kaolinite-based plant growth-promoting fertilizer with integrated slow-release and water-retention properties.

Sci Total Environ

January 2025

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

The development of ecological fertilizers has become crucial in modern agriculture due to the increasing global population and diminishing arable land resources. Herein, a plant growth-promoting fertilizer (UKS) with dual functions of slow-release and water-retention was prepared by combining liquid-phase intercalation method and crosslinking gel method. The physicochemical properties of UKS were analyzed and its dissolution, slow-release, and water-retention properties were systematically evaluated.

View Article and Find Full Text PDF

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

Purpose The purpose of this study was to evaluate whether IV dexamethasone, within the current multimodal pain management protocol, (1) could maintain postoperative pain at a comparable level without IV PCA, (2) could reduce opioids-related side effects, and (3) whether an additional dose of dexamethasone on POD 2 would offer further pain-relieving effect without increasing the risk of complications. Methods A total of 178 patients (182 knees) who underwent total knee arthroplasty (TKA) for osteoarthritis were included in the study. The patients were divided into Dexa 2 & PCA and Dexa 3 & NoPCA group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!