Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recovery of valuable materials from waste fits the principle of circular economy and sustainable use of resources, but contaminants in the waste are still a major obstacle. This works proposes a novel approach to recover high-purity phosphorus (P) and nitrogen (N) from digestate of municipal solid waste based on the combination of two independent membrane processes: electrodialytic (ED) process to extract P, and gas permeable membranes (GPM) for N extraction. A laboratory ED cell was adapted to accommodate a GPM. The length of waste compartment (10 cm; 15 cm), current intensity (50 mA; 75 mA) and operation time (9 days; 12 days) were the variables tested. 81% of P in the waste was successfully extracted to the anolyte when an electric current of 75 mA was applied for 9 days, and 74% of NH was extracted into an acid-trapping solution. The two purified nutrient solutions were subsequently used in the synthesis of a biofertilizer (secondary struvite) through precipitation, achieving an efficiency of 99.5%. The properties of the secondary struvite synthesized using N and P recovered from the waste were similar to secondary struvite formed using synthetic chemicals but the costs were higher due to the need to neutralize the acid-trapping solution, highlighting the need to further tune the process and make it economically more competitive. The high recycling rates of P and N achieved are encouraging and widen the possibility of replacing synthetic fertilizers, manufactured from finite sources, by secondary biofertilizers produced using nutrients extracted from wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.02.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!