AI Article Synopsis

  • Clinoptilolite shows varying effectiveness in capturing and releasing iron based on pH levels, with optimal sorption occurring between pH 2 and 3.5.
  • At pH 2, up to 70% of captured iron can be desorbed from a previous pH 3 solution, indicating that iron retention occurs primarily through sorption and exchange processes.
  • The study suggests that clinoptilolite can maintain its ability to hold onto metals, even as acidity increases, evolving through different states of metal retention as pH changes.

Article Abstract

Equilibrium sorption and desorption experiments were conducted with clinoptilolite to evaluate the potential sorption/desorption of iron during different pH conditions. Sorption experiments indicated a partitioning of 0% to 17% of the iron in solution given pH of 2 to 4. The pH 2 solution was able to desorb 70% of the iron that was captured from a pH 3 solution. The largest desorption and sorption of iron and corresponding pH represent the end points of iron capture primarily by sorption/exchange. These endpoints are the estimated pH of 2.5 and the initial precipitation point of iron(II) at pH ~3.5. This acidity range is where clinoptilolite is able to capture iron without precipitation or the occurrence of full surface protonation. The inability of the highest acidity to remove all sorbed iron represents the greater bound iron that will not readily desorb with a change in pH. This retained iron creates a metastable state of the clinoptilolite that has a lower sorption capacity but reflects the ability of clinoptilolite to retain a sorbed transition metal with changes in pH. As pH varies, clinoptilolite may evolve in a sequence of metastable states reflective of its ability to capture or retain metals. PRACTITIONER POINTS: Clinoptilolite is a capable reactive substrate, but its sorption/exchange effectiveness at low and variable pH and ability to retain captured metals was unknown. Clinoptilolite retains its metal capture properties to a pH of 2.5 where surface protonation and mineral degradation likely occurs. The ability of clinoptilolite to retain captured iron under greater acidity reflects an evolution of its sorption/retention capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.1557DOI Listing

Publication Analysis

Top Keywords

iron
10
clinoptilolite
9
surface protonation
8
ability clinoptilolite
8
clinoptilolite retain
8
retain captured
8
clinoptilolite iron
4
iron sorption/desorption
4
sorption/desorption multiple
4
multiple conditions
4

Similar Publications

Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism has been associated with susceptibility to chronic obstructive pulmonary disease (COPD). Resistive breathing (RB) is the hallmark of the pathophysiology of obstructive airway diseases, especially during exacerbations, where increased mechanical stress is imposed on the lung. We have previously shown that RB, through tracheal banding, mimicking severe airway obstruction, induces pulmonary inflammation and injury in previously healthy mice.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions.

View Article and Find Full Text PDF

Early recognition of acute kidney injury is essential to prevent progression to chronic kidney disease. We present the case of a 19-year-old man with multiple emergency department visits for fatigue, abdominal pain, and intermittent dark urine. Upon admission, he had pancytopenia with elements suggestive of hemolysis and acute kidney injury.

View Article and Find Full Text PDF

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!