Background: Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

Objectives: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

Results: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

Conclusion: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

Download full-text PDF

Source
http://dx.doi.org/10.3233/WOR-203424DOI Listing

Publication Analysis

Top Keywords

interaction modeling
8
modeling classification
8
classification scheme
8
human-robot interaction
8
robotic systems
8
reliable responses
8
error classification
8
input mapping
8
interaction
6
input
5

Similar Publications

Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.

View Article and Find Full Text PDF

The relationship between serum vitamin C levels and high-sensitivity C-reactive protein in children.

Sci Rep

December 2024

Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, 450000, P. R. China.

The relationship between vitamin C nutritional status and inflammation has garnered increasing attention, but studies in younger populations are limited. This study aimed to investigate the association between serum vitamin C and high-sensitivity C-reactive protein (hs-CRP) levels in children and adolescents. A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

The purpose of this study was to evaluate the psychometric properties of the Chinese version of the Revised Indebtedness Scale (IS-R-C) in mainland China. A total of 1057 university students participated in this study using a two-wave whole-group sampling method. Sample 1, consisting of 537 participants, was used for item analysis and exploratory factor analysis (EFA) of the Revised Indebtedness Scale (IS-R).

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!