Pump-probe microscopy is an emerging nonlinear imaging technique based on high repetition rate lasers and fast intensity modulation. Here, we present new methods for pump-probe microscopy that keep the beam intensity constant and instead modulate the inter-pulse time delay or the relative polarization. These techniques can improve image quality for samples that have poor heat dissipation or long-lived radiative states and can selectively address nonlinear interactions in the sample. We experimentally demonstrate this approach and point out the advantages over conventional intensity modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.417905DOI Listing

Publication Analysis

Top Keywords

intensity modulation
12
pump-probe microscopy
12
intensity
4
modulation approaches
4
approaches pump-probe
4
microscopy pump-probe
4
microscopy emerging
4
emerging nonlinear
4
nonlinear imaging
4
imaging technique
4

Similar Publications

The evolution of radiation therapy in Uganda has been a journey marked by significant milestones and persistent challenges. Since the inception of radiotherapy services in 1988-1989, there has been a concerted effort to enhance cancer treatment services. The early years were characterized by foundational developments, such as the installation of the first teletherapy units, low-dose-rate brachytherapy units, and conventional simulators, and the recognition of radiation oncologists and medical physicist professionals laid the groundwork for radiotherapy treatment modalities.

View Article and Find Full Text PDF

Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS):Ag MSCs compared with original (CdS) MSCs.

View Article and Find Full Text PDF

Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.

View Article and Find Full Text PDF

Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.

View Article and Find Full Text PDF

A SNARC-like effect for visual speed.

Atten Percept Psychophys

January 2025

Department of Developmental and Social Psychology, University of Padova, via Venezia 8, 35131, Padova, Italy.

Numerical and nonnumerical magnitudes can be represented along a hypothetical left-to-right continuum, where smaller quantities are associated with the left side and larger quantities with the right side. However, these representations are flexible, as their intensity and direction can be modulated by various contextual cues and task demands. In four experiments, we investigated the spatial representation of visual speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!