Ptychography is a robust computational imaging technique that can reconstruct complex light fields beyond conventional hardware limits. However, for many wide-field computational imaging techniques, including ptychography, depth sectioning remains a challenge. Here we demonstrate a high-resolution three-dimensional (3D) computational imaging approach, which combines ptychography with spectral-domain imaging, inspired by optical coherence tomography (OCT). This results in a flexible imaging system with the main advantages of OCT, such as depth-sectioning without sample rotation, decoupling of transverse and axial resolution, and a high axial resolution only determined by the source bandwidth. The interferometric reference needed in OCT is replaced by computational methods, simplifying hardware requirements. As ptychography is capable of deconvolving the illumination contributions in the observed signal, speckle-free images are obtained. We demonstrate the capabilities of ptychographic optical coherence tomography (POCT) by imaging an axially discrete lithographic structure and an axially continuous mouse brain sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.416144 | DOI Listing |
Transl Vis Sci Technol
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
Purpose: This study investigates the association between visual function and retinal vasculature metrics, particularly perfusion capacity (PC), in eyes with idiopathic epiretinal membrane (iERM), using optical coherence tomography angiography (OCTA).
Methods: This retrospective study includes 30 eyes from 30 iERM patients who had surgery, with a three-month follow-up period. In addition, 28 eyes from 28 healthy individuals served as a control group.
Invest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Vitreous Retina Macula Consultants of New York, New York, United States.
Purpose: The purpose of this study was to develop ground-truth histology about contributors to variable fundus autofluorescence (FAF) signal and thus inform patient selection for treating geographic atrophy (GA) in age-related macular degeneration (AMD).
Methods: One woman with bilateral multifocal GA, foveal sparing, and thick choroids underwent 535 to 580 nm excitation FAF in 6 clinic visits (11 to 6 years before death). The left eye was preserved 5 hours after death.
Acta Ophthalmol
January 2025
Department of Ophthalmology, Faculty of Medicine, University of Cologne, Cologne, Germany.
Purpose: To analyse anterior segment optical coherence tomography (AS-OCT) parameters of graft dehiscence after Descemet membrane endothelial keratoplasty (DMEK) for graft failure post penetrating keratoplasty (PK).
Methods: Retrospective evaluation of AS-OCT images of 142 dehiscences post-DMEK in 75 eyes. Dehiscences' size, depth, location, correlation with graft-host interface (GHI) override and step at GHI were assessed.
Nano Lett
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!