Background: Previous studies have provided strong evidence for the anticancer activity of berry fruits.
Objective: In this study, we investigated the effects of blackberry juice and three berry- polyphenolic compounds on cell proliferation and telomerase activity in human hepatoma HepG2 and normal peripheral blood mononuclear cells (PBMCs).
Methods: The cell viability and telomerase activity were measured by MTT and TRAP assay, respectively. Berry effects on the expression of genes were determined by quantitative RT-PCR assay.
Results: Blackberry, gallic acid, and resveratrol inhibited proliferation of both HepG2 and PBMC cells in a dosedependent manner. Resveratrol was more effective than gallic acid for reducing the viability of HepG2 cells, but both showed the same level of growth inhibition in PBMC cells. Berry, resveratrol, and gallic acid significantly inhibited telomerase activity in HepG2 cells. The antiproliferative effect of berry was associated with apoptotic DNA fragmentation. Gallic acid was more effective for reducing telomerase activity than resveratrol, but anthocyanin moderately increased telomerase activity in cancer cells. Telomerase activity was induced by all three polyphenols in PBMCs. Overall, Krumanin chloride was more effective to induce telomerase than gallic acid and resveratrol in PBMC cells. There was no significant difference in hTERT, hTR, and Dnmts expressions between berry treated and the control untreated HepG2 cells. But, a significant downregulation of HDAC1 and HDAC2 and upregulation of SIRT1 were observed in berry-treated cells.
Conclusion: These data indicate that the berry anticancer effect is associated with antitelomerase activity and changes in HDACs expression. The data also suggest that berry antitelomerase activity is mainly related to its gallic acid and resveratrol, but not anthocyanin content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520621666210315092503 | DOI Listing |
J Pediatr Surg
December 2024
Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. Electronic address:
Background: Patients with diffuse anaplastic Wilms tumor (DAWT) experience relatively poor oncologic outcomes. Previous work has described mechanisms of telomerase upregulation in DAWT, posing a potential therapeutic target.
Methods: We assessed in vitro sensitivity to vincristine, irinotecan, and telomerase-targeting drug 6-thio-2'-deoxyguanosine (6 dG) in DAWT cell lines WiT49 and PDM115 and in spheroids derived from cell lines and four DAWT patient-derived xenografts (PDX).
Sci Adv
January 2025
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.
Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA.
Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China.
Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.
Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.
Front Biosci (Landmark Ed)
December 2024
Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.
Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!