Purpose: The main characteristic of proliferative vitreoretinopathy (PVR) is migration, adhesion, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPE). Eupatilin is a naturally occurring flavone that has the potential to inhibit cell proliferation and EMT. However, its efficacy on the PVR model induced by transforming growth factor-2 (TGF-β2) is unknown. In this study, the potential effect of eupatilin on proliferation and EMT in the treatment of RPE was investigated.

Methods: Serum starved human RPE cells (ARPE-19) were treated with 10 ng/ml TGF-β2 alone or co-treated with 25 μM eupatilin for 48 h. Quantitative real-time PCR and Western blot analysis were used to assess targets at the mRNA and protein expression level, respectively. Apoptosis and cell cycle progression was assessed by image-based cytometry. The effect of treatment on cell migration was evaluated by wound healing assay.

Results: Eupatilin inhibited TGF-β2-induced RPE cell proliferation via regulating the cell cycle and inducing apoptosis. TGF-β2 upregulated mRNA expression of mesenchymal markers fibronectin and vimentin was significantly downregulated by the treatment, while the epithelial markers E-cadherin and occludin expression was upregulated. The therapy significantly suppressed TGF-β2 encouraged cell migration through downregulating the expression of transcription factors Twist, Snail, and ZEB1 induced by TGF-β2. Furthermore, eupatilin significantly inhibited the expression of MMP-1, -7, and -9, and suppressed NF-κB signalling.

Conclusion: These results suggest that eupatilin could inhibit the proliferation and transformation into fibroblast-like cells of RPE cells; thus the agent may be a potential therapeutic value in treating PVR.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15569527.2021.1902343DOI Listing

Publication Analysis

Top Keywords

epithelial-mesenchymal transition
8
retinal pigment
8
pigment epithelial
8
epithelial cells
8
cells rpe
8
cell proliferation
8
proliferation emt
8
rpe cells
8
cell cycle
8
cell migration
8

Similar Publications

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

SLAMF8 Disrupts Epithelial Barrier in Chronic Rhinosinusitis with Nasal Polyps via M1 Macrophage Polarization.

Ann Allergy Asthma Immunol

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China. Electronic address:

Background: Recent studies show that M1 macrophages accumulate predominantly in non-eosinophilic chronic rhinosinusitis with nasal polyps (neCRSwNP). However, the precise mechanisms regulating M1 macrophages and their impact on the epithelial barrier remain unclear.

Objective: We aim to investigate the expression and regulatory role of SLAMF8, a molecule exclusively expressed in myeloid cells, in M1 macrophage polarization and its potential contribution to neCRSwNP development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!