Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis , nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943638 | PMC |
http://dx.doi.org/10.3389/fgene.2021.643761 | DOI Listing |
Mol Plant
January 2025
Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland.
The fungus Eriks () is the cause of leaf rust, one of the most damaging diseases, which significantly reduces common wheat yields. In -resistant adult plants, an APR-type resistance is observed, which protects the plant against multiple pathogen races and is distinguished by its persistence under production conditions. With a more complete understanding of the molecular mechanisms underlying the function of APR genes, it will be possible to develop new strategies for resistance breeding in wheat.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic.
: The domestication of the grey wolf () and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). : We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
Interspecific hybridization between relative species (with a diploid genome designated as TT), (EE) and (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: exhibited bi-armed chromosomes while showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. In this study, fluorescence in situ hybridization (FISH) with rDNA and rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China.
Background: The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. L. (), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!