Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952753 | PMC |
http://dx.doi.org/10.3389/fpls.2021.644999 | DOI Listing |
Sci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany.
Microscopic evidence demonstrated a strictly biotrophic lifestyle of the scab fungus on growing apple leaves and characterised its hemibiotrophy as the combination of biotrophy and saprotrophy not described before. The pathogen-host interface was characterised by the formation of knob-like structures of the fungal stroma appressed to epidermal cells as early as 1 day after host penetration, very thin fan-shaped cells covering large parts of the host cell lumen, and enzymatic cuticle penetration from the subcuticular space limited to the protruding conidiophores. The cell wall had numerous orifices, facilitating intimate contact with the host tissue.
View Article and Find Full Text PDFPlant Dis
December 2024
Kansas State University, Plant Pathology, 4024 Throckmorton PSC, Manhattan, Kansas, United States, 66506.
Plant Physiol
December 2024
Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, Via Moruzzi, 1 Pisa, Italy.
Transcription factors belonging to the large Ethylene Responsive Factor (ERF) family are involved in plant responses to biotic and abiotic stresses. Among the ERFs, OCTADECANOID-RESPONSIVE ARABIDOPSIS 59 (ORA59) integrates ethylene and jasmonic acid signaling to regulate resistance to necrotrophic pathogens. The ERF group ERFVII encodes oxygen-labile proteins that are required for oxygen sensing and are stabilized by hypoxia established at the site of Botrytis (Botrytis cinerea) infection.
View Article and Find Full Text PDFPLoS One
December 2024
Liaoning Academy of Agricultural Sciences, Shenyang, China.
Sclerotinia sclerotiorum as a necrotrophic fungus causes the devastating diseases in many important oilseed crops worldwide. The preferred strategy for controlling S. sclerotiorum is to develop resistant varieties, but the molecular mechanisms underlying S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!