Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Promoting efficiency, deformability, and life expectancy of stretchable organic solar cells (OSCs) have always been key concerns that researchers are committed to solving. However, how to improve them simultaneously remains challenging, as morphology parameters, such as ordered molecular arrangement, beneficial for highly efficient devices actually limits mechanical stability and deformability. In this study, the unfavorable trade-off among these properties has been reconciled in an all-polymer model system utilizing a mechanically deformable guest component. The success of this strategy stems from introducing a highly ductile component without compromising the pristine optimized morphology. Preferable interaction between two donors can maintain the fiber-like structure while enhancing the photocurrent to improve efficiency. Morphology evolution detected via grazing incidence X-ray scattering and in situ UV-vis absorption spectra during stretching have verified the critical role of strengthened interaction on stabilizing morphology against external forces. The strengthened interaction also benefits thermal stability, enabling the ternary films with small efficiency degradation after heating 1500 h under 80 °C. This work highlights the effect of morphology evolution on mechanical stability and provides new insights from the view of intermolecular interaction to fabricate highly efficient, stable, and stretchable/wearable OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202007011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!