AI Article Synopsis

  • A biopsy is needed to definitively diagnose prostate cancer, but it's invasive and comes with risks.
  • Researchers developed an AI-based model called AI-biopsy that uses MRI images to help diagnose prostate cancer early, reducing the need for invasive procedures.
  • The AI models showed good accuracy in distinguishing between benign and cancerous tumors, as well as assessing their risk levels, indicating a potential for personalized cancer care.

Article Abstract

Background: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications.

Purpose: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information.

Study Type: Retrospective.

Population: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases).

Field Strength/sequence: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences.

Assessment: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor.

Statistical Tests: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa.

Results: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively.

Data Conclusion: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time.

Level Of Evidence: 1 TECHNICAL EFFICACY STAGE: 2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360022PMC
http://dx.doi.org/10.1002/jmri.27599DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
deep learning
8
diagnosis prostate
8
magnetic resonance
8
images labeled
8
prostate
6
cancer
6
images
6
learning approach
4
approach diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!