Microplastics have been detected on beaches and in the ocean from surface habitats to the deep-sea. Microplastics can be mistaken for food items by marine organisms, posing a potential risk for bioaccumulation and biomagnification in the food chain. Our understanding of microplastic pollution effects on ecosystem and physiological processes of coral reefs is still limited. This study contributes to the understanding of effects of microplastic pollution on skeletal precipitation of hermatypic corals. In a five month aquarium-based experiment, specimens of four tropical species were temporarily exposed to high concentrations (ca. 0.5 g L) of polyethylene terephthalate (PET) microplastic particles (< 500 μm). The coral specimens all survived this treatment and show skeletal growth. The skeletal material produced during the experiment, however, incorporated plastic particles and plastic fibres in the aragonitic structure. Long-term consequences of such inclusions on skeletal properties such as stability are yet unknown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302493PMC
http://dx.doi.org/10.1007/s11356-021-13240-xDOI Listing

Publication Analysis

Top Keywords

microplastic particles
8
microplastic pollution
8
scleractinian corals
4
corals incorporate
4
microplastic
4
incorporate microplastic
4
particles identification
4
identification laboratory
4
laboratory study
4
study microplastics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!