Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the years, scientific and legal scholars have called for the implementation of algorithms (e.g., statistical methods) in forensic science to provide an empirical foundation to experts' subjective conclusions. Despite the proliferation of numerous approaches, the practitioner community has been reluctant to apply them operationally. Reactions have ranged from passive skepticism to outright opposition, often in favor of traditional experience and expertise as a sufficient basis for conclusions. In this paper, we explore practitioners are generally in opposition to algorithmic interventions and their concerns might be overcome. We accomplish this by considering issues concerning human-algorithm interactions in both real world domains and laboratory studies as well as issues concerning the litigation of algorithms in the American legal system. Taking into account those issues, we propose a strategy for approaching the implementation of algorithms, and the different ways algorithms can be implemented, in a and manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933265 | PMC |
http://dx.doi.org/10.1016/j.fsisyn.2021.100142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!