NIR-quantum dots in biomedical imaging and their future.

iScience

Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK.

Published: March 2021

Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique optical and electronic properties due to quantum confinement effects, whose excellent optical properties make them ideal for fluorescence imaging of biological systems. By selectively controlling the synthetic methodologies it is possible to obtain QDs that emit in the first (650-950 nm) and second (1000-1400 nm) near infra-red (NIR) windows, allowing for superior imaging properties. Despite the excellent optical properties and biocompatibility shown by some NIR QDs, there are still some challenges to overcome to enable there use in clinical applications. In this review, we discuss the latest advances in the application of NIR QDs in preclinical settings, together with the synthetic approaches and material developments that make NIR QDs promising for future biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921844PMC
http://dx.doi.org/10.1016/j.isci.2021.102189DOI Listing

Publication Analysis

Top Keywords

nir qds
12
fluorescence imaging
8
excellent optical
8
optical properties
8
qds
5
nir-quantum dots
4
dots biomedical
4
imaging
4
biomedical imaging
4
imaging future
4

Similar Publications

The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals.

View Article and Find Full Text PDF

Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging.

View Article and Find Full Text PDF

Rapid, Non-Invasive, Accurate Diagnosis and Efficient Clearance of Metastatic Lymph Nodes.

Angew Chem Int Ed Engl

November 2024

CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine andi-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

Sentinel lymph node (SLN) biopsy is currently the standard procedure for clinical cancer diagnosis and treatment, but still faces the risks of false negatives and tumor metastasis, as well as time-consuming pathological evaluation procedure. Herein, we proposed a near-infrared-II (NIR-II, 1000-1700 nm) theranostic nanosystem (FLAGC) for rapid, non-invasive, accurate diagnosis and efficient clearance of metastatic lymph nodes in breast cancer. Initialized by chlorin e6 (Ce6), a pH-sensitive amphiphilic amino acid fluorenylmethoxycarbonyl-L-histidine (Fmoc-His) was assembled with Gd, luminol, and AgAuSe quantum dots (AAS QDs) to form FLAGC.

View Article and Find Full Text PDF

p-Type AgAuSe Quantum Dots.

J Am Chem Soc

November 2024

School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.

Control over the carrier type of semiconductor quantum dots (QDs) is pivotal for their optoelectronic device applications, and it remains a nontrivial and challenging task. Herein, a facile doping strategy via K impurity exchange is proposed to convert the NIR n-type toxic heavy-metal-free AgAuSe (AAS) QDs to p-type. When the dopant reaches saturation at approximately 22.

View Article and Find Full Text PDF

Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea. Electronic address:

Article Synopsis
  • Luminescence nanomaterials (LNMs) are gaining popularity in biological analysis due to their advantageous properties like high stability, low autofluorescence, and ability to use longer-wavelength light for deeper tissue penetration, especially in techniques like upconversion nanoparticles (UCNPs).
  • The development of LNMs, particularly metal-organic frameworks (MOFs), is noteworthy for their structural flexibility and multifunctionality, enhancing bioimaging and sensor applications in various fields over the past three years.
  • The integration of LNMs into lab-on-a-chip (LOC) systems has surged, especially post-COVID-19, due to the demand for portable and efficient diagnostic tools that utilize microfluidics and biodevices in a streamlined manner
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!