In recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant disease models that closely mimic conditions. Here, we review nanocomposite materials and scaffolds used for the design of models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models. Also, we highlight the application of tissue-engineered bone as a tool for faithful recapitulation of the microenvironment of metastatic prostate and breast cancer, since these two types of cancer have the propensity to metastasize to bone. Overall, we summarize recent efforts on developing 3D models of bone metastatic cancers that provide a platform to study tumor progression and facilitate high-throughput drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948119PMC
http://dx.doi.org/10.1016/j.cobme.2020.100254DOI Listing

Publication Analysis

Top Keywords

models bone
8
disease models
8
models
5
nanostructured biomaterials
4
biomaterials models
4
bone
4
bone metastasis
4
cancer
4
metastasis cancer
4
cancer years
4

Similar Publications

Finite model analysis of different anchorage sites for bone-supported facemask application in unilateral cleft lip and palate.

Am J Orthod Dentofacial Orthop

January 2025

Department of Orthodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey. Electronic address:

Introduction: The objective of this study was to evaluate the effects of the miniplate application sites in the maxilla and the applied force vector changes during skeletally supported facemask application in adolescent patients with unilateral cleft lip and palate (UCLP) using finite element model (FEM) analysis.

Methods: A FEM was obtained from a cone-beam computed tomography image of a 12-year-old female patient with UCLP. Miniplates were placed on 3 different sites of the maxilla; 500 g of advancement force was applied bilaterally, parallel (0°), and downward (-30°) to the occlusal plane.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.

View Article and Find Full Text PDF

A Framework of State Estimation on Laminar Grinding Based on the CT Image-Force Model.

Sensors (Basel)

January 2025

Institute of Robotics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

It is a great challenge for a safe surgery to localize the cutting tip during laminar grinding. To address this problem, we develop a framework of state estimation based on the CT image-force model. For the proposed framework, the pre-operative CT image and intra-operative milling force signal work as source inputs.

View Article and Find Full Text PDF

Data-Efficient Bone Segmentation Using Feature Pyramid- Based SegFormer.

Sensors (Basel)

December 2024

Master's Program in Information and Computer Science, Doshisha University, Kyoto 610-0394, Japan.

The semantic segmentation of bone structures demands pixel-level classification accuracy to create reliable bone models for diagnosis. While Convolutional Neural Networks (CNNs) are commonly used for segmentation, they often struggle with complex shapes due to their focus on texture features and limited ability to incorporate positional information. As orthopedic surgery increasingly requires precise automatic diagnosis, we explored SegFormer, an enhanced Vision Transformer model that better handles spatial awareness in segmentation tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!