AI Article Synopsis

  • The gene family studied is crucial for intracellular transport and stress tolerance in plants, particularly in wheat.
  • A total of 74 wheat genes (TaARFs) were identified, clustered into seven sub-groups, with a focus on the strongly conserved TaARFA1 sub-group.
  • These genes exhibit tissue-specific expression patterns affected by various biotic and abiotic stresses, indicating their potential roles in enhancing wheat resilience and aiding in the development of improved wheat varieties.

Article Abstract

The gene family plays important roles in intracellular transport in eukaryotes and is involved in conferring tolerance to biotic and abiotic stresses in plants. To explore the role of these genes in the development of wheat (Triticum aestivum L.), 74 wheat genes (TaARFs; including 18 alternate transcripts) were identified and clustered into seven sub-groups. Phylogenetic analysis revealed that TaARFA1 sub-group genes were strongly conserved. Numerous -elements functionally associated with the stress response and hormones were identified in the TaARFA1 sub-group, implying that these are induced in response to abiotic and biotic stresses in wheat. According to available transcriptome data and qRT-PCR analysis, the genes displayed tissue-specific expression patterns and were regulated by biotic stress (powdery mildew and stripe rust) and abiotic stress (cold, heat, ABA, drought and NaCl). Protein interaction network analysis further indicated that TaARFA1 proteins may interact with protein phosphatase 2C (PP2C), which is a key protein in the ABA signaling pathway. This comprehensive analysis will be useful for further functional characterization of genes and the development of high-quality wheat varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934654PMC
http://dx.doi.org/10.7717/peerj.10963DOI Listing

Publication Analysis

Top Keywords

biotic abiotic
8
abiotic stress
8
genes development
8
taarfa1 sub-group
8
analysis
5
wheat
5
genes
5
genome-wide identification
4
identification expression
4
expression analysis
4

Similar Publications

Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.

View Article and Find Full Text PDF

Resource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (), Little Egrets () and Squacco Herons ().

View Article and Find Full Text PDF

Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice.

Sci Rep

January 2025

Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.

Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress.

View Article and Find Full Text PDF

Celosia argentea is a plant known for producing bioactive compounds, including betalains, which possess various biological and pharmaceutical properties. This study aimed to investigate the effect of biotic and abiotic elicitors on betalains production and their antioxidant activity in cell suspension cultures of C. argentea.

View Article and Find Full Text PDF

Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!