Ovate family proteins (OFPs) are a class of proteins with a conserved OVATE domain that contains approximately 70 amino acid residues. OFP proteins are plant-specific transcription factors that participate in regulating plant growth and development and are widely distributed in many plants. Little is known about OFPs in to date. We identified 29 genes in and found that they were unevenly distributed on 10 chromosomes. Intron gain events may have occurred during the structural evolution of paralogues. Syntenic analysis verified genome triplication, and whole genome duplication likely contributed to the expansion of the gene family. All genes had light responsive- and phytohormone-related cis-acting elements. Expression analysis from RNA-Seq data indicated that there were obvious changes in the expression levels of six genes in the hybrid, which may contribute to the formation of heterosis. Finally, we found that the paralogous genes had different expression patterns among the hybrid and its parents. These results provide the theoretical basis for the further analysis of the biological functions of genes across the species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938782PMC
http://dx.doi.org/10.7717/peerj.10934DOI Listing

Publication Analysis

Top Keywords

gene family
8
genes
5
genome-wide identification
4
identification characterization
4
characterization gene
4
family chinese
4
chinese cabbage
4
cabbage ssp
4
ssp ovate
4
ovate family
4

Similar Publications

Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.

View Article and Find Full Text PDF

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Molecular and functional convergences associated with complex multicellularity in Eukarya.

Mol Biol Evol

January 2025

Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.

A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.

View Article and Find Full Text PDF

Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease.

Front Plant Sci

January 2025

National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.

Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.

View Article and Find Full Text PDF

Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!