The distribution of a group of fish and macroinvertebrates ( = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along-shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978-2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along-shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920786 | PMC |
http://dx.doi.org/10.1002/ece3.7150 | DOI Listing |
J Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Environmental Epidemiology Team, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency (UKHSA), Didcot OX11 0RQ, UK.
Carbon monoxide (CO) is a toxic gas, and faulty gas appliances or solid fuel burning with incomplete combustion are possible CO sources in households. Evaluating household CO exposure models and measurement studies is key to understanding where CO exposures may result in adverse health outcomes. This assists the assessment of the burden of disease in high- and middle-income countries and informs public health interventions in higher-risk environments.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China. Electronic address:
Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Instituto de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República de Italia # 780, Azul 7300, BA, Argentina.
Cereal crops are affected by one of the most devastating diseases worldwide, known as Fusarium head blight (FHB), with being the most isolated causal pathogen. Another species associated with this disease is . This species has been considered a relatively weak pathogen compared to , but its importance has increased due to its occurrence in cereal grains worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!