Increasing industrial and agricultural activities have led to a disturbing increase of pollutant discharges into the environment. Most of these pollutants can induce short-term, sustained or delayed impacts on developmental, physiological, and behavioral processes that are often regulated by the endocrine system in vertebrates, including fish, thus they are termed endocrine-disrupting chemicals (EDCs). Physiological impacts resulting from the exposure of these vertebrates to EDCs include abnormalities in growth and reproductive development, as many of the prevalent chemicals are capable of binding the receptors to sex steroid hormones. The approaches employed to investigate the action and impact of EDCs is largely dependent on the specific life history and habitat of each species, and the type of chemical that organisms are exposed to. Aquatic vertebrates, such as fish, are among the first organisms to be affected by waterborne EDCs, an attribute that has justified their wide-spread use as sentinel species. Many fish species are exposed to these chemicals in the wild, for either short or prolonged periods as larvae, adults, or both, thus, studies are typically designed to focus on either acute or chronic exposure at distinct developmental stages. The aim of this review is to provide an overview of the approaches and experimental methods commonly used to characterize the effects of some of the environmentally prevalent and emerging EDCs, including 17 α-ethinylestradiol, nonylphenol, BPA, phthalates, and arsenic; and the pervasive and potential carriers of EDCs, microplastics, on reproduction and growth. and studies are designed and employed to elucidate the direct effects of EDCs at the organismal and cellular levels, respectively. approaches, on the other hand, comprise computational methods that have been more recently applied with the potential to replace extensive screening of EDCs. These approaches are discussed in light of model species, age and duration of EDC exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947849 | PMC |
http://dx.doi.org/10.3389/fendo.2020.619361 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFMetabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.
This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Million Marker Wellness, Inc., Berkeley, CA 94704, USA.
Background: Daily-use products, including personal care products, household products, and dietary supplements, often contain ingredients that raise concerns regarding harmful chemical exposure. Endocrine-disrupting chemicals (EDCs) found in daily-use products are associated with numerous adverse health effects.
Methods: This pilot study explores the relationship between concentrations of EDCs in urine samples and products used 24 h prior to sample collection, and ingredients of concern in those products, in 140 adults of reproductive age in Northern Nevada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!