Homoharringtonine Exerts Anti-tumor Effects in Hepatocellular Carcinoma Through Activation of the Hippo Pathway.

Front Pharmacol

Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China.

Published: February 2021

Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer with a mortality rate of approximately 3-6/100,000 and is the third leading cause of cancer-related death worldwide. Although several small-molecule drugs have been developed for the treatment of HCC, the choice of an agent for patients who require systemic chemotherapy at an advanced stage is still limited. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway commonly dysregulated in HCC, which makes it a promising target for anti-HCC therapies. Homoharringtonine (HHT) is an FDA-approved anti-leukemia drug with proven strong anti-tumor activity in solid tumors. In this study, we found that HHT could significantly inhibit HCC cell growth by suppressing cell proliferation and colony formation. Moreover, HHT repressed cell invasion and migration remarkably. Additionally, HHT induced cell cycle arrest at S phase and promoted apoptosis. Most importantly, we showed that HHT-induced apoptosis was a consequence of the Hippo pathway activation. Consistently, the MST1/2 inhibitor, XMU-MP-1, could restore cell viability and reverse HHT-induced cell apoptosis. Furthermore, results confirmed the tumor inhibitory effect of HHT. Taken together, our findings suggest that HHT is a potential alternative therapeutic agent for the treatment of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943857PMC
http://dx.doi.org/10.3389/fphar.2021.592071DOI Listing

Publication Analysis

Top Keywords

hippo pathway
12
hepatocellular carcinoma
8
treatment hcc
8
hht
6
cell
6
hcc
5
homoharringtonine exerts
4
exerts anti-tumor
4
anti-tumor effects
4
effects hepatocellular
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Transcriptomic comparison of corneal endothelial cells in young versus old corneas.

Sci Rep

December 2024

Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea.

Corneal endothelial cells, situated on the innermost layer of the cornea, are vital for maintaining its clarity and thickness by regulating fluid. In this study, we investigated the differences in the transcriptome between young and old corneal endothelial cells using next-generation sequencing (NGS). Cultured endothelial cells from both young and elderly donors were subjected to NGS to unravel the transcriptomic landscape.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.

Curr Issues Mol Biol

December 2024

Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.

Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.

View Article and Find Full Text PDF

Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.

Biosensors (Basel)

November 2024

Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.

Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!