Primates are facing a global extinction crisis driven by an expanding human population, environmental degradation, the conversion of tropical forests into monocultures for industrial agriculture and cattle ranching, unsustainable resource extraction, hunting, climate change, and the threat of emerging zoonotic diseases. And, although many primate scientists have dedicated their careers to conservation, 65% of primate species are listed as Vulnerable, Endangered, or Critically Endangered, and >75% are experiencing a population decline. Projections indicate that by the end of the century, an additional 75% of the area currently occupied by wild primates will be lost to agriculture. Clearly, we are losing the battle and must change business-as-usual if we are to protect wild primates and their habitats. This article is a call to action. Primate societies and their membership need to expand their engagement in scientific advocacy and scientific activism designed to educate, inspire, organize, and mobilize global citizens to join together, lobby business leaders and politicians in both primate habitat countries and in consumer nations, boycott forest-risk products, participate in demonstrations and letter writing campaigns, and use social media to effect transformational change. We are the experts, and the more we and our professional organizations drive the public policy debate on wildlife conservation and environmental justice, the more successful we will be in protecting the world's primates from extinction. The time to act is now!
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944466 | PMC |
http://dx.doi.org/10.1007/s10764-021-00201-x | DOI Listing |
J Med Virol
February 2025
Department of Chemistry, Assam University, Silchar, India.
The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFFront Immunol
January 2025
Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, China.
Introduction: Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.
View Article and Find Full Text PDFVitam Horm
January 2025
Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!