In these days, all agar media used for both pharmaceutical and industrial territories were required to meet performance criteria. There were recovery rates of assigned microorganisms as performance criteria in both pharmacopeia and ISO standards. However, in spreading plate method, there is no concrete spreading time even though it is shown only "as quickly as possible" in ISO standards. In this study, we verified the impact of spreading time in spreading plate method for the quality control of SCD (Soybean Casein Digest) agar plate. When 30s, 60s, and 120s of spreading time were compared using Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 6538, Candida albicans ATCC 10231, and Aspergillus brasiliensis ATCC 16404, respectively, there is no significant difference in recovery rates of all strains tested between 30s and 60s. However, recovery rates of E. coli and P. aeruginosa were decreased in 120s of spreading time. Our results demonstrated that spreading using plastic rod would be better to complete within 60s in spreading plate method since long spreading time had the impact to recovery rate of certain bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4265/bio.26.43 | DOI Listing |
PLoS One
January 2025
UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom.
Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh.
The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!